The Matrix is so far ahead of our current understanding of computing as to border on magical. Nevertheless, there are some ways in which it resembles the networks we are familiar with today.
This is the part of the Matrix that relies on device-to-device connections and is called the local mesh or sometimes the lower grid. The extreme density of devices in a 2080 city, combined with the ability to seamlessly pass traffic from device to device, can get your signal where it needs to go.
The local mesh has a strictly limited range: too many hops, too much distance, or too much interference and the signal degrades to become useless. Fortunately, for a legitimate user, their network traffic only needs to reach an uplink node, so this is rarely an issue.
Any two or more Matrix devices within range of each other will always form a local mesh, even if they cannot route a signal out to the wider Matrix. They will still be able to communicate within themselves as normal.
When you want to communicate with a device that’s outside local mesh range, first you need an uplink node. These are scattered around major metropolitan areas, typically serving an area of a square kilometer or so. Your device sends traffic along the local mesh until it reaches the nearest or most convenient uplink node. Uplinks serve as the onramps to the rest of the Matrix; they bridge your traffic over to the backbone.
Uplink nodes are sometimes called beanstalks by deckers, because they lead to the clouds.1
The backbone, or the upper grid, is the planet-sized interconnected network of fibre cables, satellites, microwave and visible-laser point-to-point communications, and other bleeding-edge-tech ways of getting 1s and 0s from A to B. Once your traffic is on the backbone, distance is no object and bandwidth is functionally infinite.
Security on uplink nodes is fierce, and traffic on the backbone is routinely subjected to deep packet inspection by GOD. Only the most legendary of novahot deckers have ever managed to smuggle illegal traffic over the backbone, let alone compromise an uplink node entirely.
NB: This document removes the “Foundation” as the main operating medium of the Matrix entirely. The “backbone”, as I’m calling it, is its man-made, understandable-tech replacement.
I’m in favour of technomancers; I think the whole concept of “magic”-powered hackers is quintessentially cyberpunk/urban fantasy. But I can’t get past the Foundation being this thing that powers the whole Matrix. It can be mysterious or it can be everyday but it can’t be both at once. And the lore is hopelessly knotted: hosts are “grown” from the Foundation, but we can’t tell you how, and that makes hosts expensive because it’s very dangerous, except every Stuffer Shack has one. I can’t find a path through this.
So I say: get rid of it. Keep the Resonance and Dissonance as mysteries-man-was-not-meant-to-know, like metaplanes and whether or not spirits are summoned or created. But make the core Matrix itself entirely technological.
You can easily keep Foundation hosts, however — restricting them to rare, mysterious, and very powerful hosts only. And they can keep their associated weakness to Foundation dives and the plot possibilities they contain.
The backbone infrastructure is administered and patrolled by GOD, and is theoretically neutral between the megacorps. But the corps didn’t get rich by trusting each other. Where security demands it, it’s not unusual for corporations to run their own private communication lines - for example between a secure, hidden facility and a more public one. This lets the secure facility access the Matrix discreetly without making its location or purpose obvious.
On the local mesh, dark fibre functions like a wormhole. If you can hack the controlling host on one end, you can coerce it to carry your traffic to the other, and suddenly you can “see” devices that could be hundreds of kilometers away. Occasionally, wily shadowrunners use this as part of a smash-and-grab, using a forgotten dark fibre link to hack into a distant host that is too physically well-protected to get near in the physical world.
Hosts are the servers of the Matrix; they’re the guardians of data, the places you go to get stuff done, and the engines that keep the wheels turning. They come in a few types:
Local hosts - quite common, these are small, physical servers that are (literally, physically) local to whatever they control. Low to medium rated security systems, building control, stock-keeping, industrial control systems in factories, etc etc. They are only connected to (and can only be reached via) the local mesh, and hence are only usable at relatively short ranges.
When viewing the Matrix in VR, local hosts appear down at ground level, at a distinct physical location (unless they are hidden.) Well-funded deckers and other criminals might acquire low-end local hosts for nefarious purposes.
Cloud hosts - the grown up version of local hosts, used to run services that have to be accessible by people all over the planet. Distributed across lots and lots of physical servers, roughly analogous to a modern day planet-scale website, and directly connected to (and usually only reachable from) the backbone. As such, you can almost always get a good connection to a cloud host, unless your local mesh is being disrupted or you are far from civilisation.
When viewing the Matrix in VR, cloud hosts float up in the sky.
Cloud hosts are enormously expensive to run, both for the hardware required and for the licencing and necessary security to connect to the backbone.
Offline hosts - local hosts with no connection to a local mesh. Can be used for cold storage of very valuable files, or wires-only ultramax security systems, or old systems still running in abandoned and forgotten buildings, or things deckers have cobbled together. Typically low rating, as the amount of processing power and hardware becomes very serious for higher ratings; but could in theory be anything. Offline hosts might be connected to online ones via dark fibre (see below.)
Not every host advertises its existence. So-called dark hosts are ones that are running silent on the Matrix. Local dark hosts can be detected by getting close to them and looking for hidden Matrix icons in the usual way. Cloud dark hosts are trickier, however, and can normally only be visited if you have the secret co-ordinates to find it.
Commlinks are the most visible part of the Matrix - the device most commonly associated with it in people’s minds. They are analogous to modern-day smartphones, and often take the form of a pocket-sized slab covered in a touchscreen (although they can be much smaller if the user forgoes the screen. They can even be wholly implanted, in case you wanted to become an even bigger hacking target than you already are.)
Most people using a commlink do so via a direct neural interface and augmented reality.
Civilians typically get DNI in one of two different ways: either via a datajack, or trodes. Both offer a wireless connection to the commlink, with a wired option as a backup. Trodes are a terrible experience though, with a noticeably poorer AR quality, and a connection that often glitches out unless the user stays quite still (as the trode net can shift around on the head). You can glue it down, but now you have glue in your hair and it’s gonna sting when you take it off. On top of that, they require significantly more concentration to generate DNI signals to interact with the device - they’re just not as sensitive at reading your brainwaves - which gives most people a headache after a few hours. This is why datajacks are heavily preferred and, consequently, extremely common - despite their invasive nature.
(People with more extensive cyberware can get direct neural interfaces through other options - for example, a rigger’s vehicle control rig cyberware includes all the same functionality as a datajack as part of the package. And some people have commlinks or cyberdecks enitrely implanted, which also give them DNI on demand, without any further hardware.)1
Users who won’t or can’t get DNI can still get a crude form of AR via various pieces of hardware: headphones for audio, plus contacts/glasses/goggles for visual AROs. They can even just about use user interface AROs, although the tactility component is vastly inferior, even if they wear special feedback gloves. It’s a crappy, godawful experience though, and only a Luddite would do this if they had any choice.
Finally, if all else fails, you can always fall back to actually touching the screen on the commlink itself. This still has some usefulness, although in the age of AR it is not most people’s preferred experience. There’s a few reasons people still buy commlinks with screens, though:
Commlinks are the only type of general-purpose computer most people own. With fairly serious onboard compute power, plus the ability to borrow more via fog computing, they can do everything most people need. And through augmented reality, they can expand or contract their interface to fit in the palm of your hand or fill your vision and walls.
Commlinks may be - for most people - the most visible and obvious type of Matrix device, but tags are by far the most common.
“Tag” is a catch-all term for any small, single-purpose device that connects directly to the Matrix. They are often associated with and attached to a single object in the real world, giving that object a presence on the Matrix and a tiny degree of computing smarts.
The most basic kind of tag is a combination of informational and locational, and these are built into almost all durable consumer goods, from socks to jewelry to coffee mugs.
Tags have a dark side: for an unmodified tag, there is no guarantee that the data it is logging is staying private. A law-abiding wageslave is typically being tracked by dozens of tags on their body at all times, all of which are uploading location data and contact tracing data to an endless array of overlapping ad tracking networks. The only kind of privacy they can hope to enjoy is through obscurity; by not being interesting enough to ever be noticed in the sea of data, and by relying on the fact that the data is gathered by competing corps so no-one ever puts the full picture together.
Cyberdecks are some of the most complex consumer electronics ever made by mankind. They use dozens of different types of parallel processors, incorporate huge libraries of known vulnerabilities and malware attacks, hundreds of expert systems so advanced as to be bordering on semi-sapient AI, and have nitrogen-cooled quantum computing cores that can break some of the toughest encryption known to metahuman kind in minutes. They have about the same resemblance to commlinks as a variable-geometry VTOL fighter jet does to the Wright Brother’s first plywood-and-canvas airframe.
In other words, they’re kind of a big deal.
credit to u/Finstersang ↩︎